

Procedure of setting Reactive Power Compensation at Night with SmartLogger3000

Huawei Technologies Co. Ltd.

Version	Created by	Date	Remarks
01	m00598297	26.03.2021	Reactive Power

The information in this document may contain predictive statements including, without limitation, statements regarding the future financial and operating results, future product portfolio, new technology, etc. There are a number of factors that could cause actual results and developments to differ materially from those expressed or implied in the predictive statements. Therefore, such information is provided for reference purpose only and constitutes neither an offer nor an acceptance. Huawei may change the information at any time without notice.

1. Reason of Reactive Power Consumption at Night

All inverters have an output EMI filter that prevents high frequency EMI interference inside the inverter from feeding into the grid.

During nighttime, inverter does not work, output relay is disconnected, but the capacitors of EMI filter are permanently connected to grid, which causing capacitive reactive power consumption.

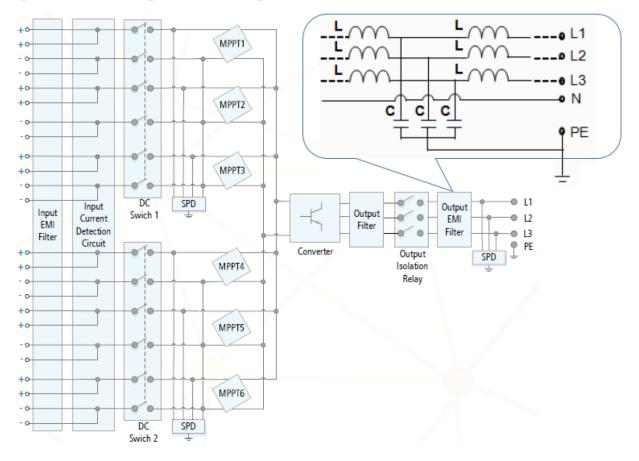


Fig. 1 Circuit Diagram of SUN2000 inverters

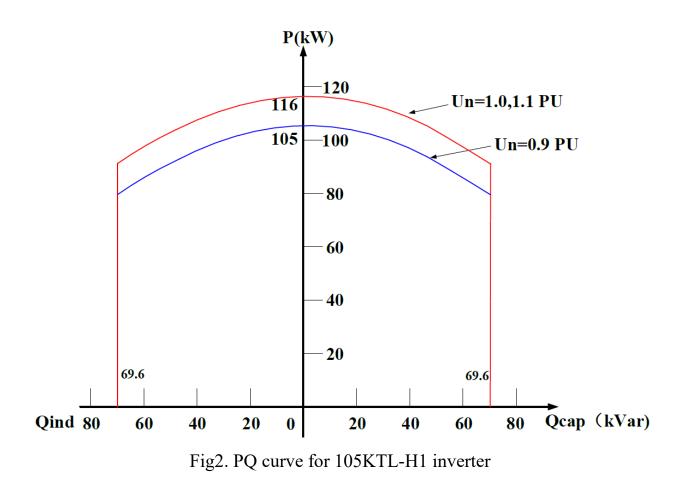
The formula to calculate reactive power is as below:

$$S = 3UI = 3\frac{U^2}{X_c}$$

$$X_c = \frac{1}{2\pi fc}$$

Where U is the grid voltage, U=462V for medium voltage grid connection (800V), U=230V for low voltage grid connection (400V).

According to above formula, for SUN2000 series inverters, the reactive power consumed by each inverter during nighttime is as below.


Model	Capacity(µF)	q-ty of	Output	Reactive
		capacitors per	Voltage (V)	Power (var)
		phase (pcs)		
SUN2000-	1.93	3	400	291
36KTL				
SUN2000-	1.8	3	400	271
50/60KTL				
SUN2000-	2.2	1	800	442
105KTL				
SUN2000-	0.12	1	800	24
185KTL				
SUN2000-	XXX	XXX	800	XXX
215KTL				

2. Inverter capabilities to generate reactive power

Inverter as current source working on grid voltage can supply current with any phase shift, and generate active, reactive or both types of power parallel. Additionally inverter can be power from either DC or AC side, which means it can generate reactive power also during the night.

Direct working range is described in document called Output Characteristic Curve, with characteristic curve called PQ. It describes inverter ability to generate active/reactive power vs. grid voltage, and in cross-section with horizontal axis describes ability to generate only reactive power. For 105KTL range is from 69.6 KVar inductive to 69.9KVar capacitive reactive power to be supplied to grid by one inverter during day and night.

For other inverter in SUN2000 family reactive power capability is as below:

- 105 69.6 KVar 185 – 110 KVar
- 215 129 KVar

3. Case study for 1MWp installation

<u>Reactive Power calculation</u> for typical 1MWp PV plant:

In example: 7 inverters 105KTL connected to 1MVA transformer.

The no-load current of transformer Io% is 0.2, and the inductive reactive power of transformer is Qo = 2KVar, when there is no load during the night.

The capacitive reactive power produced by 7pcs 105KTL inverters at night is 7*442 = 3094var

Then the capacitive reactive power of entire 1MVA block is 3.094 - 2 = 1.094KVar needs to be compensated.

<u>Reactive Power real case scenario</u> typical 1MWp PV plant:

In example: 15 inverters 60KTL connected to 1MVA transformer and 10km SN line to SN connection point.

Night time reactive power consumption in connection point rises to 215KVar, reasoning high penalty fees.

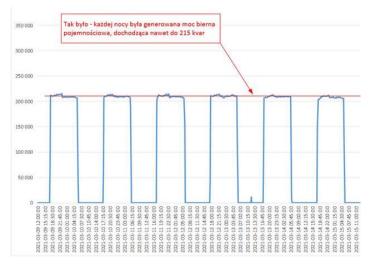


Fig3. Reactive Power at night in connection point 215KVar

4. Setting reactive power compensation at Night

In order to compensate reactive power first some settings needs to be Enabled. Place of each parameter can differ according to Smart Logger type, software version and inverter type connected.

Set Insolation Input ungrounded (withTF)

SmartLogger1000A	Running	Info: Active	Alarm Performance Data Yield Running Param.	LVRT Characteristic Curve X About	λ	
Logger(Local)	Grid Para		tect Parameters X Feature Parameters X Power Adjustme			
SUN2000		No.	Signal Name	Value		Unit
60KTL-M0(COM1-1)		1	Grid code	VDE-AR-N-4105	~	
60KTL-M0(COM1-2)		2	Isolation	Input ungrounded(with TF)	~	
60KTL-M0(COM1-3)		3	Output mode	Three-phase four-wire	~	
60KTL-M0(COM1-4)	0	4	PQ mode	PQ mode 1	~	
60KTL-M0(COM1-5)		5	Auto start upon grid recovery	Enable	~	
		6	Grid connection duration after power grid recovery	60	[0, 7200]	s
60KTL-M0(COM2-6)		7	Grid reconnection voltage upper limit	253.0	[230.0, 312.8]	V
60KTL-M0(COM2-7)		8	Grid reconnection voltage lower limit	195.5	[103.5, 230.0]	V
60KTL-M0(COM2-8)	•	9	Grid reconnection frequency upper limit	50.10	[50.00, 60.00]	Hz
60KTL-M0(COM2-9)		10	Grid reconnection frequency lower limit	47.50	[40.00, 50.00]	Hz
GOKTL-M0(COM2-10) GOKTL-M0(COM3-11) GOKTL-M0(COM3-12) GOKTL-M0(COM3-13) GOKTL-M0(COM3-14) GOKTL-M0(COM3-15) MBUS						
 60KTL-M0(COM3-11) 60KTL-M0(COM3-12) 60KTL-M0(COM3-13) 60KTL-M0(COM3-14) 60KTL-M0(COM3-15) 						

Reactive power output at night Enable

PID protection at night Disable

SmartLogger1000A	Running	Info. Active	Alarm Performance Data Yield Running I	Param. About		
Logger(Local)	Grid Para			Access Detection		
SUN2000		No.	Signal Name	Value		Unit
60KTL-M0(COM1-1)		1	MPPT multi-peak scanning	Disable	~	
60KTL-M0(COM1-2)		2	RCD enhancing	Disable	~	
60KTL-M0(COM1-3)		3	Reactive power output at night	Enable	۲.	
60KTL-M0(COM1-4)	0	4	PID protection at night	Disable	~	
60KTL-M0(COM1-5)		5	Power quality optimization mode	Enable	~	
		6	PV module type	Crystalline silicon	*	
60KTL-M0(COM2-6)		7	PID compensation direction	Output disabled	~	
60KTL-M0(COM2-7)		8	String connection mode	Automatic detection	*	
60KTL-M0(COM2-8)	• 🗆	9	Communication interrupt shutdown	Disable	~	
60KTL-M0(COM2-9)		10	Communication interruption duration	30	[1, 120]	min
60KTL-M0(COM2-10)		11	Soft start time	20	[1, 1800]	s
60KTL-M0(COM3-11)		12	Hibernate at night	Disable	~	
60KTL-M0(COM3-12)		13	MBUS communication	Disable	~	
60KTL-M0(COM3-13)	0	14	Upgrade delay	Enable	*	
60KTL-M0(COM3-14)		15	String monitor	Disable	~	
		16	Tracker controller	No tracking controller	~	
60KTL-M0(COM3-15)		17	Shutdown gradient	50.000	[0.100, 2500.000]	%/s
MBUS-inside						

Enable reactive power parameters at night

Set Range of Reactive Power compensation at night

SmartLogger1000A	Running	Info. Active	Alarm Performance Data Yield Running Param.	LVRT Characteristic Curve	About	
Logger(Local)	Grid Para	meters Pro	etect Parameters / Feature Parameters / Power Adjustme	nt Power baseline		
SUN2000		No.	Signal Name	Value		Unit
60KTL-M0(COM1-1)		1	Remote power schedule	Enable	~	
60KTL-M0(COM1-2)		2	Schedule instruction valid duration	0	[0, 86400]	s
60KTL-M0(COM1-3)		3	Maximum active power	66.000	[0.100, 66.000]	kW
60KTL-M0(COM1-4)		4	Shutdown at 0% power limit	Disable	~	
60KTL-M0(COM1-5)		5	Active power change gradient	125.000	[0.100, 1000.000]	%/s
		6	Fixed active power derated	66.0	[0.0, 66.0]	kW
60KTL-M0(COM2-6)		7	Active power percentage derating	100.0	[0.0, 100.0]	%
60KTL-M0(COM2-7)		8	Reactive power output at night	Enable	~	
60KTL-M0(COM2-8)	• 🗆	9	Enable reactive power parameters at night	Enable	•	
60KTL-M0(COM2-9)		10	Reactive power compensation at night	-35.000	[-39.600, 39.600]	kVar
60KTL-M0(COM2-10)		11	Reactive power change gradient	125.000	[0.100, 1000.000]	%/s
60KTL-M0(COM3-11)		12	PF(U) voltage detection filter time	1.5	[0.1, 120.0]	s
60KTL-M0(COM3-12)		13	Power factor	1.000	(-1.000, -0.800]U[0.800, 1.000]	
60KTL-M0(COM3-13)		14	Reactive power compensation(Q/S)	0.000	(-1.000, 1.000]	
60KTL-M0(COM3-14)		15	Overfrequency derating	Enable	~	
		16	Trigger frequency of over frequency derating	50.20	[40.00, 60.00)	Hz
60KTL-M0(COM3-15)		17	Quit frequency of over frequency derating	50.15	[40.00, 60.00)	Hz
MBUS		18	Cutoff frequency of overfrequency derating	51.50	(40.00, 60.00]	Hz
MBUS-inside		19	Cutoff power of overfrequency derating	48	[0, 100]	%
		20	Power recovery gradient of overfrequency derating	10	[1, 6000]	%/min
		21	Underfrequency rise power	Disable	~	

Public

5. Reactive Power Control

FusionSolar Distributed Reactive Power Compensation Solution offers different type of plant management according to reactive power setting. Full list of options below.

– User Param.	Reacti	ve Power (Control					
Date&Time					Reactive power	control mode	DI reactive scheduling	
Plant		No.	M1.DI1	M1.DI2	M1.DI3	M1.DI4	No output DI reactive scheduling	
Revenue		1					Reactive power fix control	
Save Period							Q-U characteristic curve	
© Comm. Param.							cosφ-P/Pn characteristic curve Q-U hysteresis curve(CEI0-16)	
- Power Adjustment							Remote communication scheduling	
-							Power factor closed-loop control (old policy) Power factor closed-loop control	
Active Power Control							PF-U characteristic curve	
Reactive Power Control							Q-P characteristic curve	

Fig. 5 Full list of available options to control reactive power.

More information's according Reactive Power Control can be found in links

SmartLogger Manual https://support.huawei.com/enterprise/en/doc/EDOC1100108365/fdf170ec/settingreactive-power-control

FusionSolar Distributed Reactive Power Compensation Solution https://support.huawei.com/enterprise/en/doc/EDOC1100154247

Youtube Channel FusionSolar Service

https://www.youtube.com/watch?v=DPSIsSCvyuw

https://www.youtube.com/watch?v=iUeKh7GTKcc

6. 215 KVar compensation scenario

In example: 15 inverters 60KTL connected to 1MVA transformer and 10km SN line to SN connection point.

Night time reactive power consumption in connection point rises to 215KVar, reasoning high penalty fees.

For this real case scenario client used **Reactive power fixed control** set for 210 KVar working between 18.30 and 6.30.

Enspire		Deployn	nent Wizard Over View Monitoring Query	Settings Ma	aintenance		English V () E
© RS485	Reactive Po	ower Co	ntrol				
 Power Meter 			Reactive power control	Enable		~	
Modbus TCP			Reactive power control mode	Reactive power fi		v	
 Active Power Control 		No.	Start time		Reactive power(kVar)		
Reactive Power Control			18:30:00		210.0		
Remote Shutdown	2	2	06:30:00		0.0		
o Di							
Export Limitation							
Intelligent Reactive Pow							
• DRM	•						
친구들이 크게 크다.							
	Add D	Delete	Modify				
				Submit			
II Time 2021-03-25 14:20	Grid dispatch	P:100.09	% Q:0.0kVar			👋 Copyright © Huawei Technologie	s Co., Ltd. 2019. All rights reserved.

In SmartLogger 6 inverters was set to work during nighttime according to presented suggestion in instruction. Those devices were visible during night with green dot and Reactive power production around 36kVar.

Enspire		Over View Monitoring Query Settings	Maintenance	
SmartLogger1000A		Running Info. Active Alarm Performance Data Y	field About	00
Logger(Local)	No.	Signal Name	Value	Unit
SUN2000	1	Device status	On-grid	
60KTL-M0(COM1-1)	2	Rated power	60.000	kW
60KTL-M0(COM1-2)	3	Energy yield of current day	213.13	kWh
60KTL-M0(COM1-3)	4	Total energy yield	3445.60	kWh
	5	Reduced CO2 emission	3435.26	kg
60KTL-M0(COM1-4)	6	Input power	0.000	kW
60KTL-M0(COM1-5)	7	Active power	0.000	kW
60KTL-M0(COM2-6)	8	Reactive power	39.593	kVar
60KTL-M0(COM2-7)	9	Power factor	0.000	
60KTL-M0(COM2-8)	10	PV1/PV2/PV3/PV4/PV5/PV6/PV7/PV8 voltage	43.4/43.4/40.5/40.5/43.1/43.1/40.1/40.1	V
60KTL-M0(COM2-9)	11	PV9/PV10/PV11/PV12 voltage	40.3/40.3/44.6/44.6	V
60KTL-M0(COM2-10)	12	PV1/PV2/PV3/PV4/PV5/PV6/PV7/PV8 current	0.00/0.00/0.00/0.00/0.00/0.00/0.00/0.00	A
60KTL-M0(COM3-11)	13	PV9/PV10/PV11PV12 current	0.00/0.00/0.00/0.00	A
60KTL-M0(COM3-12)	14	Grid A/B/C phase voltage	237.2/238.2/240.3	V
	15	Grid A/B/C phase current	55.410/55.467/55.511	A
60KTL-M0(COM3-13)	16	Grid frequency	50.02	Hz
60KTL-M0(COM3-14)	17	Cabinet temperature	35.9	degC
60KTL-M0(COM3-15)	18	Locking	Unlocked	
MBUS	19	Startup time	2021-03-18 05:27:37	
MBUS-inside	20	Shutdown time	2021-03-17 18:05:24	
	21	Collect DSP data	Normal	
	22	Active power adjustment	P = 100.0%(Active power deration percent)	
	23	Reactive power adjustment	Q = 39.600kVar(Reactive power compensation at night)	

According to customer measurement active compensation increased reactive power at first night due to incorrect positive compensation sign. After changing sign value to negative next night decrease of reactive power consumption was observed.

Needles in picture represents time between end of inverters work to start compensation. In future compensation values will be set automatically by customer SCADA system in closed loop with measured parameters in connection point.

For simple cases we suggest to use Power Factor Close-loop Control (old policy) option which measures Power Factor at connection point and automatically set inverter to keep constant value.

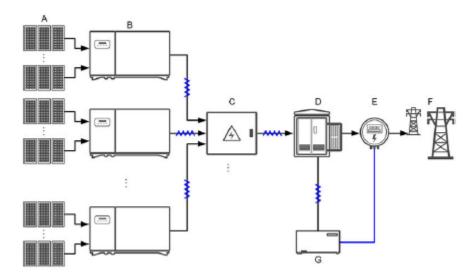


Fig. 6 Closed loop control scenario